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ABSTRACT 

Rotordynamic response phenomena, including backward whirl, were investigated 

both analytically and experimentally. A two degree-of-freedom rotor model was 

developed to simulate the steady state, lateral vibration characteristics of a simply 

supported, single disk rotor. This model includes the effects of direct and cross-coupled, 

linear damping and stiffness coefficients. The computer model was used to quantify the 

influence of bearing characteristics on rotordynamic response. The presence of split 

resonance, which appears to be due to separate and distinct natural frequencies in the two 

orthogonal lateral directions and the occurence of backward whirl between these two 

frequencies was studied. The effects of geometric imperfections in the bearing sleeve, 

gravitational forces and bearing support stiffnesses were isolated using the experimental 

apparatus. It was determined that the split resonance induced backward whirl and the 

different natural frequencies were caused by asymmetric stiffness of the bearing support 

structure as well as gravitational forces. Bearing imperfections did not create the 

backward whirl phenomena. The bearing support characteristics necessary to create the 

observed rotor orbits were determined. 
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I.    INTRODUCTION 

Rotating machinery is widely used throughout the world in various applications. Such 

devices include gas turbines, steam turbines, pumps, compressors and fans. Rotating 

devices are subjected to numerous external and internal forces. These forces can be 

categorized as either steady or time varying. The time varying, or vibratory motions create 

alternating stresses, which tend to decrease the operational life of the equipment, due to 

wear and high cycle fatigue. Proper prediction of the machine dynamics, during the design 

phase, along with an appropriate condition monitoring program, during the life cycle, is 

imperative if sufficient component life is to be ensured. Smooth operation of rotating 

machines is critical to all users of these machines including the U.S. Navy. 

Rotating machines can undergo many types of, vibrations which are induced from a 

variety of sources. Axial compressor and turbine airfoils, excited primarily by upstream 

wakes, may undergo bending and torsional vibration loads. The shaft and disks can 

vibrate in axial, torsional and lateral modes. All of these vibrations may occur due to either 

external forcing or various self-excitation mechanisms. 

Lateral vibrations, due primarily to residual imbalance in rotating members, is the most 

common type of vibration encountered in practice. Rotors tend to be designed to operate at 

speeds in excess of their first lateral critical speed. This is termed supercritical operation. 

This type of operation provides low vibration levels at the operating speed and light weight 

devices leading to less expensive machinery. One major problem with operating a rotor 

supercritically is that the rotor must proceed through the resonance speed, where high 

vibratory stresses occur, prior to reaching its operating speed. Transition through the 

critical speed should be done as quickly as possible in order to prevent such resonant 

conditions or to reduce the time at which the equipment experiences the high vibration 



levels. To reduce the lateral bending forced response, which is due to residual imbalance, 

many balancing techniques are employed. However, even when the device is in balance to 

a specific grade the radial response near the resonant speed can be quite high. The 

vibration problems encountered in rotating machinery can lead to significant equipment 

damage due to the close tolerances encountered in the rotating device. The alternating 

stresses generated by these vibrations can also create bearing distress, which can lead to 

premature failure. 

The major design considerations relating to lateral shaft vibrations are to determine the 

critical frequencies and the radial response magnitudes as a function of rotor speed (and 

possibly rotor angular acceleration) as well as any potential regimes of rotordynamic 

instability. 

Rotating equipment design can be improved by having a better understanding of the 

various rotordynamic phenomena which relate to machinery vibration problems. 

Understanding the dynamics of the various components in a rotating machine can lead to 

much improved designs and hence longer operating lives and lower life-cycle costs. 

An ideal, symmetric rotor with symmetric bearings and supports will typically have 

circular orbits of the shaft center which get progressively larger until the critical speed is 

reached After the rotor transitions through the critical speed the orbits remain circular and 

decrease in size. The orbits remain in the same direction as the rotation of the shaft 

(forward whirl), as shown in Figure 1. Maximum displacements from the shaft centerline 

are observed at or near the critical speed (resonance). 

However, in a recent experimental investigation by Simei [Ref. 1], a much more 

complex lateral response was observed from a simply supported single disk rotor. The 

orbits started in a small amplitude, circular forward procession at low speeds. As the rotor 

speed was increased the orbits became elliptical. At an initial critical speed, the orbit 

"collapsed" into a line. At a slightly higher speed the rotor executed a whirl orbit in the 



reverse direction of shaft spin. This phenomena is termed "backward whirl" and is shown 

in Figure 2. There was a small range of rotor speeds where the backward whirl 

phenomena occurred. At a slightly higher speed a second resonant peak occurred along 

with another collapsed orbit. As the speed was further increased the orbits again proceeded 

in the forward direction and became more circular (less elliptical). 

A* 

/ 

y 

Figure 1.   Rotor and Disk Assembly in Forward Whirl 

The backward whirl phenomena is believed to be caused by distinctly different natural 

frequencies of the rotor system in the two orthogonal lateral directions. [Ref. 2] The two 



(split resonant) frequencies cause x and y displacement curves to have peak values at 

separate rotational speeds. 

Figure 2.   Rotor and Disk Assembly in Backward Whirl 

The objectives of this research were to identify the cause of the split resonance and 

backward whirl phenomena. To determine if, in fact, these two phenomena are caused by 

different natural frequencies in the two directions created by non-symmetric bearing 



rotordynamic coefficients and, if this was determined to be the cause of backward whirl, to 

identify the specific cause of the asymmetry. 

In Chapter II a review of the pertinent literature is given to provide sufficient 

background information concerning this research. 

In an attempt to identify the causes for the complex behavior noticed in the simple rotor 

configuration an analytic model is developed in Chapter III and the major parameters varied 

to influence rotor responses. The analytic solutions are compared to experimental results 

obtained in a closely controlled environment. 

In Chapter IV experiments, which were conducted, are described and show the effects 

of gravity, bearing eccentricity and imbalance. In generating experimental data a variety of 

rotor bearing configurations was employed, however the shaft remained in the simply 

supported configuration 

To determine the effect of imbalance, the rotor was purposely placed out of balance 

using known weights. The amount of imbalance was gradually increased. To determine 

the effect of bearings on rotor response, elongated bearings (eccentric) were used and 

oriented in various relative positions on the bearing mounts. The shaft was then positioned 

in orthogonal directions with respect to the gravitational field to determine the effects of 

gravity and bearing support structure on rotor response. 

A modal test to determine static natural frequencies of the experimental apparatus in the 

two lateral directions was conducted by installing accelerometers on the rotor assembly and 

applying a known impulsive force with the use of a precision hammer. The vertical natural 

frequency was found to be slightly higher than the horizontal natural frequency implying 

asymmetric stiffness properties in these two directions. 

A discussion of results from both the experimental and analytic models is contained in 

Chapter V and recommendations and conclusions are provided in Chapter VI. 





II. BACKGROUND 

The first documented rotordynamic analysis was submitted by Rankine [Ref. 3] in 

1869. He considered a simply supported rotating shaft and proposed that the deflection of 

the shaft is caused by the centrifugal force due to some nominal shaft deflection. Opposing 

this force is the shaft bending rigidity (stiffness). In the analysis he came to the erroneous 

conclusion that supercritical operation was statically unstable in the rotating reference frame 

and hence not possible for rotating machines. In Rankine's analysis, the Coriolis forces in 

the rotating reference frame were not considered. If purely radial motion of the shaft is 

considered this would be the case, however, the orbiting motion creates additional forces 

which stabilize the shaft. 

In 1919 Jeffcott [Ref. 4] published an article analyzing the effects of imbalance on 

rotating machines. This analysis, which is considered the classical reference on the 

subject, provides the simplest and most accurate model of the dynamics of a simply 

supported rotating shaft. Jeffcott corrected the basic mistake made by Rankine. The 

Jeffcott rotor is comprised of a long shaft with a concentrated mass disk. This is a two 

degree-of-freedom model for transverse motion. Jeffcott described the phenomena of 

"whirling" and was the first to notice, and correctly assess, the effect of natural frequencies 

on rotordynamic response. Damping was neglected in his analysis and a pronounced 

change in phase was observed as the rotor transitions from subcritical speeds through 

resonance to supercritical speeds. In addition, Jeffcott showed the advantages of 

supercritical operation of rotating machinery. 

Subsequent to Jeffcott's work, many authors have developed analytical models for 

rotors and compared the predicted results to those obtained experimentally. The influence 

of bearing dynamics, gyroscopic effects (from the disk), support flexibility and many other 

phenomena have been investigated   In 1986 Muszynska [Ref. 5] published an article 



detailing the fundamental response of rotating machines. Muszynska expressed an analytic 

model of rotor imbalance which included damping forces to predict rotor dynamic response 

for a wide range of unbalanced rotors. 

In 1988 Vance [Ref. 2] proposed that the backward whirl phenomena is caused by the 

rotor imbalance when the rotational speed is between to natural frequency splits caused by 

bearing stiffness asymmetry. He also surmised that increased damping would cause the 

backward whirl phenomena to "disappear." He had, in fact, observed the backward whirl 

phenomena in his experimental results. 

Simei [Ref. 1], in a Masters Thesis at the Naval Postgraduate School, obtained a rotor 

analysis kit from the Bentley Nevada Corporation and installed software for data 

acquisition and signal processing. Under certain shaft loading conditions backward whirl 

was observed and documented, however an explanation as to the cause of this phenomena 

was not provided Simei used brass oil impregnated (oilite) bearings for all of his 

experiments and configured the rotor assembly as simply supported with a single disk 

arrangement. The backward whirl phenomena was observed to occur between to distinct 

maximum displacement peaks in the two orthogonal lateral directions. 
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III.   ANALYTIC MODEL 

In order to determine the cause of the split resonance and backward whirl and to 

predict rotordynamic response, a simple analytic model was developed. The model had to 

be capable of incorporating non-symmetric bearing characteristics, both stiffness and 

damping, which was hypothesized to be the cause of the observed split resonance and 

backward whirl. In this model the rotor shaft was modeled as a two degree-of-freedom (x 

and y) lumped mass and stiffness shaft and disk assembly as shown in Figure 3. 

x    -* 

MASS IMBALANCE (M) 

SHAFT 

Kyy, Kyx 

Figure 3.   Analytic Lumped Mass and Stiffness Model of Two Degree- 
of-Freedom Rotating Shaft and Disk Assembly. 



The model includes bearing and shaft forces which are linearly related to the displacements 

and velocities of the rotor only. The variations in the axial direction have been ignored. All 

of the properties have effectively been concentrated into the single axial plane. The mass is 

the algebraic sum of the disk and the shaft masses. The direct stiffnesses, Kxx and Kyy, 

are a combination of the rotor shaft and the bearings stiffness. The cross stiffness terms, 

Kxy and Kyx, are due to any self excitation interfacial forces provided by the bearings. 

These are non-conservative forces. The direct damping terms, Cxx and Cyy, are from both 

material damping of the shaft as well as bearing and support proportional damping. 

This model treats those cases when the two bearings are identical, but not necessarily 

symmetric. This means that the x and y displacements along the shaft follow the functional 

form of: 

x(t,z) = x(t:z = zo)0(z) (1) 

and 

y(t,z) = y(t: z = z0)tf>(z) (2) 

Where, x(t,z) and y(t,z) are the x and y displacements along the shaft, z is the axial 

direction, Zo is a particular location along the length of the shaft and tp(z) is the whirling 

mode shape. 

The equation of motion for this model system, in terms of q, which represents the 

radial displacement of the shaft centerline, can be written in matrix form as: 

[M]|q} + [C]{q} + [KKq} = {F(t)} (3) 

with, 
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q.üa 4    dt 

n      d2q q = ^F 
and the mass, damping and stiffness matrices respectively, are given by: 

[M] = 

[C] = 

[K] = 

(4) 

"M„ 0 

. 0 Mj 
XX Cxyl 

c 
yy- 

(5) 

Kv xx xy 

yx yy 

where, 

Mtot = Mshaft + Mdisk; 

Kxx = Kxx(shaft) + KXx(bearing); Kyy = Kyy(shaft) + Kyy(bearing); 

KXy and KyX = coupling or cross stiffness ; 

Cxx = Cxx(shaft) + CXx(bearing); Cyy = Cyy(shaft) + Cyy(bearing); 

Cxy and Cyx = coupling or CTOSS damping 

and, since the force on the shaft, F(t), is created by a mass imbalance and is periodic in 

time it can be expressed in exponential notation as: 

{F(t)}=Fe -a*** (6) 

where j =V^T, Q is the rotational speed of the shaft in rad/sec and t is time. From 

Figure 3 the force magnitude is: 
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F = F = MeQ2 (7) 

where, M is the mass of the imbalance, e is the radial distance from the shaft centerline 

to the location of the mass imbalance and Q is the rotational speed of the shaft. 

x and y displacements are known to be sinusoidal and the absolute displacements in 

the x and y directions are orthogonal, therefore, assume q is of the form: 

{q} = qeja (8) 

where q is a radial displacement: V(x2+y2) • Taking derivatives with respect to time: 

q^=qöQ)ej£2t 

qf=q(-Q2)eja 
(9) 

Substituting Equations (7) (8) and (9) into Equation (3) gives 

[M]q(-fl2)ep + [C]q(jfl)eifll + [K]qept = Fejnt (10) 

but ejnt * o for finite time and solving Equation (10) for q leads to, 

q = [[K]-Q2[M] + jfl[C]rF dD 

Now the displacements x and y can be determined by selectively substituting 

Equations (4) and (5) into Equation (11) which provides for a direct solution for the 

displacements: 
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IM 
lyl 

-Q2 

0 

0 

M,„, + jß c„ 
c, 
c 

yy 

{FejQt} (12) 

Equation (12) is limited to steady state (constant speed) response, symmetric shaft 

configurations, and linear stiffness and damping. This equation does not apply to cases 

where the rotor is accelerating or configured with two different types of bearings. 

To obtain an approximation for the stiffness terms, the shaft and disk assembly can be 

modeled as a pinned-pinned beam as shown in Figure 4. Where the force P is the weight 

of the disk. 

7 in 

14 in 

P 

7 in 

DISPLACEMENT CURVE 

Figure 4.   Analytic Pinned-Pinned Model of Shaft and Disk Assembly. 

From [Ref. 6] the stiffness of the shaft is: 

K.h.ft — 
48EI 

'shift T 3 
(13) 
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Using the shaft data in Appendix A, the shaft and disk mass can be determined and the 

shaft stiffness is found to be 495 lbf/in. The bearing stiffness and all of the damping terms 

must be selectively chosen since no hard data is available and modeling it is non-trivial. 

The displacements obtained using Equation (12) are for the disk position and a straight 

line extrapolation can be performed to obtain the displacements anywhere along the length 

of the shaft. 

To quantify the effects of the various parameters in Equation (12) values were chosen 

for stiffness and damping with a 1.0 gram mass imbalance imposed and the equation was 

solved The model was used to see the effects on rotor response caused by separately 

imposed analytic conditions. The first solution only considers the stiffness of the shaft and 

uses symmetric damping and stiffness. A comparison was made to the results obtained in 

[Ref. 1]. The procedure was repeated many times with varying coefficients in an attempt to 

isolate the effects of asymmetric stiffness, asymmetric damping, cross stiffness and cross 

damping. The results of some of these analyses are contained as plots in Appendix B and 

an explanation of each solution is provided in the following subsections (stiffnesses are in 

lbf/in and damping coefficients are dimensionless). 

It may be possible to optimize Equation (12) to match observed data, however, this 

was not done. The sequential progression through each of the imposed analytic responses 

lead to an increased understanding of rotordynamic response phenomena. 

The rotational speed of the shaft is termed (lx), twice rotational speed is (2x) and one 

half rotational speed is (l/2x). This terminology follows that contained in the reference 

material discussed in Chapter n. 

A.   Kxx = 495, KYY = 495, Cxx = -025, CyY = -025 

The rotor orbits and displacements are shown in Figure 6. The orbits are circular, as 

expected, with a resonant speed of approximately 2720 rpm. The displacements in the x 
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and y directions are symmetric with a maximum value of 32 mils. The phase diagram and 

cascade plot are shown in Figure 7. A smooth transition from subcritical to supercritical 

speed is observed on the phase diagram at the resonant speed. The cascade plot indicates 

the energy content of the system is contained at the operating speed of the shaft with no 

indication of (l/2x) or (2x) vibrations. This is to be expected since sub-harmonic and 

super-harmonic responses are due to nonlinearities which this model does not contain. The 

observed resonant speed is lower than that obtained in [Ref. 1] which leads to the 

conclusion that a bearing stiffness term exists. 

B. KxX = 535, KYY = 555, CXX =   025, CYY = .025 

The bearing stiffness is assumed to be 40 lbf/in where the disk is located along the 

shaft and 20 lbf/in asymmetric stiffness is imposed The rotor orbits and displacements are 

shown in Figure 8. The orbits begin in a circular pattern at slow speeds and proceed into 

elliptical patterns and exhibit the backward whirl condition at 2840 rpm. This closely 

matches the resonant speed found in [Ref. 1]. Two distinct resonant speeds are evidenced 

from the displacement plots which is indicative of the asymmetric stiffness in the x and y 

directions, however the magnitudes of the displacements are similar. The phase diagram 

and cascade plot are shown in Figure 9. The phase shift for the x direction remains smooth 

and the cascade plot is similar to symmetric stiffness. 

C. Kxx = 535, KYY = 535, CxX =  035, CYY =  02 

The rotor orbits and displacements are shown in Figure 10 for symmetric stiffness and 

asymmetric damping. The orbits are circular at slow speeds and become elliptical as the 

resonant speed is reached, however, backward whirl is not observed. The resonant speed 

is the same in both the x and y directions but the y displacement magnitude is greater due to 

the lower damping coefficient. The phase diagram and cascade plot are shown in Figure 

15 



11. The phase transition is smooth while the cascade plot shows the increased amplitude of 

vibration in the y direction. 

D. KXX = 535, KYY = 555, Cxx =  04, CyY =  02 

For asymmetric stiffness and asymmetric damping the rotor orbits and displacement 

plots are shown in Figure 12. The orbits are circular at slow speeds and become elliptical 

near resonance. Backward whirl is evidenced at 2860 rpm which is approximately the 

midpoint of the maximum x and maximum y displacements. The phase diagram and 

cascade plot, Figure 13, show a smooth transition through resonance and a lower spectral 

amplitude due to the interaction of stiffness and damping. 

E. KXX = 535, KYY = 575, CXX =  04, CYY = -025 

To investigate the decreased cascade spectral amplitude the stiffness asymmetry is 

increased while the damping asymmetry is decreased The rotor orbits and displacement 

plots are shown in Figure 14. The orbits begin circular and proceed into elliptical patterns 

as resonance is approached. The backward whirl condition remains through a wider range 

of speeds, between 2840 and 2920 rpm. The displacement peaks are further separated due 

to the increase in stiffness asymmetry. The cascade plot, Figure 15, shows no marked 

change in spectral magnitude and the phase diagram remains smooth throughout resonant 

transition. 

F. KXX=535,  KYY=535,  KXY=40,  KYX=10,  CXX =  025, CYY =  025 

The rotor orbit and displacement plots for symmetric stiffness and symmetric damping 

with cross stiffness terms are shown in Figure 16. The orbits begin circular but quickly 

become elliptical as shaft rotational speed is increased. In the region of the y displacement 

dip, backward whirl is observed with the elliptical orbits perpendicular to those of Figure 

14. The magnitude of the x displacement is almost twice that of the y displacement. The 
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cascade plot for the y direction is shown in Figure 17 and the low amplitude of response is 

depicted. The phase diagram, Figure 17, indicates a 180 degree phase shift at the first 

resonant peak, another 180 degree phase shift at the base of the first resonant peak and a 

final 180 degree phase shift at the second resonant peak. 

G.   KXX=535,  KYY=535,   KXY=10,  Kyx=40,  CxX =   025, CyY = .025 

The rotor orbits and displacement plots illustrating the effect of reversing the cross 

stiffness amplitudes are shown in Figure 18. The orbits are similar, however the axis of 

orbit elongation is perpendicular to those of Figure 16. Backward whirl is evidenced 

through the same speed range. The y displacement is now nearly twice the magnitude of 

the x displacement. The phase diagram and cascade plots are shown in Figure 19. The 

phase begins to shift as the first resonant speed is approached but is delayed by the large 

decrease in x displacement amplitude at 2800 rpm. The phase shift then proceeds smoothly 

through the rest of the transition zone. The cascade plot shows the increased spectral 

magnitude in the y direction. 

H.   KXX=535,  KYY=535,  CXX=025,   CYY=025,   CXY=-02,   CYX=-01 

The rotor orbits and displacements for symmetric stiffness and symmetric damping 

with negative cross damping terms are illustrated in Figure 20. The rotor orbits are slightly 

elliptical near resonant speeds and circular elsewhere. The large magnitude of 

displacements in both the x and y directions stem from the negative cross damping terms. 

The magnitude of the x displacement is greater than the y displacement. The phase diagram 

and cascade plot, Figure 21, show a steep phase shift through resonance due to the 

negative cross damping and the cascade plot shows a large spectral amplitude at the 

resonant speed. 
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I.   KxX=535,   KYY=535,   CXX=-025,   CYY=-025,   CXY=02,   CYX=01 

The rotor orbits and displacement plots for symmetric stiffness and damping with 

positive cross damping are shown in Figure 22. The rotor orbits become elliptical near 

resonance but remain in the forward whirl condition and the major axis of the elliptical 

orbits is perpendicular to those shown in Figure 20. The x displacement has a small area 

where the curve flattens (near 2800 rpm) and the y displacement magnitude is greater than 

the x displacement. The phase diagram and cascade plots are shown in Figure 23. The 

phase diagram shows a small region (at approximately 2800 rpm) where the phase curve 

flattens. This is the same region with the flattened displacement curve. The cascade plot 

indicates the spectral energy content. 

J.   KXX=535,   KYY=555,   KXY=-5,  KYX=3, CXX =   025, CYY =   025 

The rotor orbits and displacement plots for asymmetric stiffness, symmetric damping 

and imposed opposite cross stiffnesses are shown in Figure 24. The orbits begin circular 

and become elliptical as the rotor approaches resonant speed The shaft does not achieve 

the backward whirl condition. The displacement plot shows a small double peak near the 

resonant speed. The phase diagram and cascade plot, Figure 25, shows a small overshoot 

in the phase transition. Spectral peaks are located near the resonant speed and at the forced 

response speed (operating speed) of the rotor. 

In conclusion, the analytic model, previously developed, does predict the split 

resonance and backward whirl phenomena noticed in [Ref. 1]. Distinctly different types of 

responses are generated depending on the type of stiffness and damping terms employed in 

the solution. The asymmetric stiffness model matches most closely to the experimental 

results obtained by Simei. [Ref. 1] 
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IV.    EXPERIMENTAL INVESTIGATION 

The analytic results provided in Chapter III showed that asymmetric stiffness 

(difference in KXx and Kyy terms) created the split resonance and backward whirl 

phenomena similar to that experienced by Simei. [Ref. 1] 

To determine the physical cause of the stiffness asymmetry the rotor assembly 

hardware, used in [Ref. 1], was investigated. 

Finally as a direct measurement, accelerometers were positioned on the rotor assembly 

and a precision hammer (load cell) was used to provide a known impulsive force to the 

rotor. The horizontal (x direction) static natural frequency was found to be 46.00 cycles 

per second (cps), while that of the vertical (y direction) was 46.75 cps. The disparity in the 

two frequencies leads to the possibility of asymmetric supports or bearings as a cause of 

the split resonance. 

The lubrication regime within the bearing during the split resonance and backward 

whirl phenomena is unknown. Since the bearing is manufactured with oil impregnated 

brass, the lubrication may be hydrodynamic (either full or partial oil film), metal to metal 

rub or the shaft may actually lift off of the surface and be in aerodynamic lubrication. 

Possible causes were divided into four broad categories: non-circularity of the 

bearings, gravity effects, degree of imbalance and bearing support asymmetry. 

1.   Non-Circularity of Bearings 

The shaft diameter is 0.375 inches with a design radial bearing clearance of 1 mil. The 

bearings were removed from the experimental hardware used in [Ref. 1] and one of the 

bearings was found to be 2 mils out-of-round (non-circular). The physical condition of the 

bearing and its orientation with respect to the two orthogonal lateral directions may lead to 

unequal stiffness terms in the x and y directions. This would, in effect, create different 

KXx and Kyy terms as used in the analytic model. 
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2. Gravity Effects 

The position of the shaft journal in the bearing may constrain the motion of the shaft 

within the bearing, thus increasing the magnitude of force necessary to cause the rotor to 

move in that direction. This type of situation can be directly related to stiffness variations 

in the two lateral directions. 

3. Degree of Imbalance 

The magnitude of the mass imbalance may generate a forcing function F(t) which is 

large enough to overcome the constraints of gravity and rotor centrifugal force and produce 

backward whirl. 

4. Support Asymmetry 

The bearing support structure is itself asymmetric. The vertical (y) direction is bolted 

to the assembly base plate, which may make the stiffness greater in the vertical direction. 

The horizontal (x) direction of the support is not hard mounted and may have more 

flexibility (less stiffness) as a result. 

Of the four possible physical causes presented only gravity effects, non-circularity of 

the bearings or bearing support asymmetry can create asymmetric direct stiffness. 

In order to determine the actual physical cause of the asymmetric stiffness, the 

experimental facility developed in [Ref. 1] was used to provide data for a variety of rotor 

imbalances and bearing and shaft orientations. The ROTOR.VI program developed in 

[Ref. 1] was used to collect the time trace data which was processed and plotted using a 

MATLAB computer program. 

The rotor assembly is shown in Figure 5 and a variety of mounting configurations and 

bearing arrangements was used to determine the effect of various parameters on 

rotordynamic responses. The data obtained from the various rotor configurations is 

tabulated at the end of this Chapter. The plotted results from the experimental 

investigations are contained in Appendix C. 
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DISK 

SECTION A-A 

Figure 5.   Configuration of Experimental Rotor System. 
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A.   GOOD BEARING TABLE MOUNT 

The rotor assembly was mounted on a table with a soft foam pad under the base plate. 

Both the inboard and outboard bearings, with respect to the drive motor, were replaced 

with circular bearings (good bearings) of 1 mil clearance between the shaft journal and the 

bearing. The foam pad acts as a low pass filter, thus eliminating any high frequency 

unwanted inputs to the system. The x direction is horizontal and the y direction is vertical, 

or in the direction of gravitational force as shown in Figure 5. 

1. Good Bearing No Imbalance 

The rotor orbits for a good bearing (circular with 1 mil radial clearance; tolerance of 

0.5 mil) with no shaft imbalance are shown in Figures 26, 27 and 28. The originally 

circular orbits become elliptical and collapse into a line at a resonant speed of 2840 rpm. 

Backward whirl is not observed. The orbits at twice critical speed (5600-6200 rpm) remain 

circular. The radial displacement and phase diagrams are shown in Figure 29. The phase 

shift is abrupt through the resonant speed while the displacement plot has a wide frequency 

range in which resonance occurs. The cascade plot shown in Figure 30 indicates the 

frequency corresponding to the maximum amplitude. A slight amount of spectral energy is 

evidenced in the (2x) and (3x) regions of the plot. 

2. Good Bearing 0.5 Gram Imbalance 

The rotor orbits for a good bearing with a 0.5 gram imbalance are shown in Figures 

31, 32 and 33. The resonant speed is much less abrupt, but a large amplitude response 

exists between 2800 and 2900 rpm. The orbits begin circular then become elliptical and 

collapse into a line at 2800 rpm. The orbits then become elliptical again, in the forward 

whirl direction, and again collapse at 2900 rpm. From this speed onward the orbits revert 

back into a circular pattern and remain circular at twice the critical speed. The radial 

displacement shows a slight double peak and the phase diagram indicates higher damping is 

evident by the gradual transition through resonance, Figure 34. The cascade plot, Figure 
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35, indicates a higher spectral energy content at resonance and (2x) and (3x) vibration 

levels are observed. 

3. Good Bearing 1.0 Gram Imbalance 

The rotor orbits for a good bearing with 1.0 gram imbalance are shown in Figures 36, 

37, 38 and 39. The orbits are circular at slow speeds and become elliptical as the resonant 

speed is approached. The orbits collapse into a line at 2800 rpm and then proceed into 

elliptical orbits in the backward whirl condition. The orbits remain in backward whirl until 

2890 rpm when the orbits collapse into a line again. The orbits leave this condition in 

forward whirl and remain forward throughout the rest of the experimental speeds. At twice 

the resonant speed two distinct orbits are evidenced. The radial displacement and phase 

diagrams, Figure 40, show an increase in split resonance range and a higher displacement 

in the y direction than the x direction. The phase plot continues to show slightly increased 

damping, however, the transition through critical speed remains abrupt. Figure 41 depicts 

the cascade or spectral information and indicates increased spectral content at the (l/2x) 

speed when the rotor is at twice the critical speed corresponding to the two distinct orbits at 

these speeds. 

4. Good Bearing 1.6 Gram Imbalance 

The rotor orbits for critical and super-critical speeds for 1.6 gram imbalance are shown 

in Figures 42, 43,44,45 and 46. The orbits collapse at 2760 rpm and proceed into a much 

more pronounce backward whirl condition through 2880 rpm. The orbits collapse again at 

2890 rpm and proceed into another backward whirl orbit with the major axis shifted to a 

more vertical direction. The orbits abruptly change to forward whirl at approximately 3125 

rpm and remain forward and circular through 7000 rpm. The orbits at twice critical speed 

again exhibit the dual orbit phenomena. Two very distinct peaks are noticed in Figure 47. 

The magnitudes of the x and y displacements are almost identical, however, the speed at 

which they occur is more widely separated. The phase transition, in Figure 47, shows a 
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decrease in the phase slope as the rotor approaches resonance. The peak displacement 

remains for a longer speed duration which causes the phase to remain at 90 degrees for a 

short while. Figure 48 shows the cascade plot and indicates spectral energy content at 

(l/2x) when the rotor is at twice resonant speed but also indicates high energy content at 

(2x), (3x) and (4x) frequencies when the rotor is at critical speed. 

B.   BAD BEARING TABLE MOUNT 

To test the effect of a non-circular bearing on rotor response and particularly split 

resonance and backward whirl, a spare bearing was machined into an elliptical shape. The 

major axis was measured to be 0.3810 inches while the minor axis was 0.3760 inches. 

This represents a very non-circular bearing. 

Only one bad bearing was used in the experimental apparatus and positioned in the 

inboard bearing support (closest to the proximeters). The use of two bad bearings would 

have resulted in much higher vibrational displacements than can be measured with the 

proximeters in the positions illustrated in Figure 5. The outboard bearing was kept as a 

circular bearing. 

1.   Vertical Bad Bearing 1.0 Gram Imbalance 

The bearing was positioned with the major axis of elongation in the vertical (y 

direction). The rotor orbits for this configuration are shown in Figures 49, 50, 51 and 52. 

The orbits begin circular at slow rotor speeds and proceed into elliptical patterns as resonant 

speed is approached. The rotor reaches resonance at 2840 rpm as the orbits collapse into a 

line. A slight backward whirl is observed until the rotor reaches 2940 rpm at which point 

the orbits collapse again then proceed in a forward whirl motion and elliptical patterns. The 

orbits become circular again at 3200 rpm. At twice the resonant speed very large deflection 

amplitudes are present along with peculiar rotor orbits. The orbits become normal at 6000 

rpm. The radial displacement and phase diagrams, Figure 53, show a very wide split peak 
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near the resonant speed and a second double peak near twice the resonant speed. The rotor 

exhibits a phase shift at each of these speeds. The cascade plot, Figure 54, shows the 

increased (l/2x) energy content at twice resonance and high vibration levels at (2x) and 

(3x) frequencies through all rotor speeds. 

2. Horizontal Bad Bearing 1.0 Gram Imbalance 

The rotor orbits with the elongated bearing positioned with the major axis in the 

horizontal (or x direction) are shown in Figures 55, 56, and 57. The orbits near resonant 

speed are similar to those for the vertical position, however, the orbits at twice resonant 

speed are much less erratic. The radial displacement and phase diagrams, Figure 58, again 

show a split peak near resonance and another at twice resonant speed and the phase again 

shifts twice. The cascade plot is shown in Figure 59. 

3. 45 Degrees Left Bad Bearing 1.0 Gram Imbalance 

The elongated bearing was positioned with the major axis in the general direction of 

the resonant displacement (approximately 45 degrees off the vertical). The rotor orbits are 

shown in Figures 60, 61, 62 and 63. The near resonance orbits are again similar to those 

for the vertical bearing direction and the twice resonance speed orbits are similar as well 

except that they occur at slower rotational speeds. The radial displacement and phase 

diagrams, shown in Figure 64, indicate a split displacement peak near resonant speed and 

at twice resonant speed, however the phase shift is less pronounced at the higher speeds. 

The cascade plot, Figure 65, indicates less spectral energy content at the (2x) and (3x) 

frequencies. 

4. 45 Degrees Right Bad Bearing 1.0 Gram Imbalance 

The elongated bearing was positioned with the major axis perpendicular to the 

direction of resonant displacement (approximately 45 degrees off the vertical). The rotor 

orbits are shown in Figures 66, 67 and 68. The amount of backward whirl exhibited in 

this configuration is slightly reduced near the resonant speed. The orbits at twice resonant 
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speed are much more similar to the good bearing configuration with a 1.0 gram imbalance. 

The radial displacement and phase diagrams, Figure 69, more closely resembles the good 

bearing plots depicted in Figure 40. The elongated bearing causes the phase shift to 

become erratic at speeds above resonant speed. The cascade plot in Figure 70 shows no 

indication of energy in (l/2x) frequency range when the rotor is at twice resonant speed, 

however (2x) and (3x) frequency levels are observed. 

C. HORIZONTAL SHAFT MOUNT 1.0 GRAM IMBALANCE 

The rotor assembly was wall mounted with the shaft in the horizontal flongitudinal) 

direction with rubber mounts installed between the base plate and the wall board. The x 

direction for this configuration remains horizontal and the y direction is in the vertical 

direction (direction of gravitational forces). Good bearings were installed at both the 

inboard and outboard positions. 

The rotor orbits are shown in Figures 71, 72 and 73. The rotor orbits begin circular at 

slow rotational speeds then proceed into elliptical orbits. The orbits never collapse, 

however they rotate about the shaft centerline axis and at higher speeds the orbits are tilted 

off the vertical in a configuration which resembles a normal fluid lubricated bearing 

position. The displacement plots, Figure 74, show the decreased amplitude in the x 

direction due to the rubber isolation mounts and the effect of the wall board. The phase 

shift is very gradual, indicative of increased system damping. The cascade plot shown in 

Figure 75 shows the decrease in spectral energy at resonant speeds and a decrease in (2x) 

and (3x) vibration levels. 

D. VERTICAL SHAFT MOUNT 1.0 GRAM IMBALANCE 

With the rotor assembly wall mounted with the long axis of the shaft in the direction of 

gravitational force (vertically) the rotor orbits are depicted in Figures 76, 77 and 78. The 

orbits are circular at slow speeds and become elliptical near resonance. The collapse of the 
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orbits near 2600 rpm indicate a decrease in the resonant speed and at higher speeds the 

orbits exhibit characteristics very similar to the analytic orbits obtained using slight 

asymmetric direct stiffness in Chapter III. Since the rotor is mounted with the y direction 

in the direction of the wall mounts the displacements are smaller in that direction, Figure 

79. The phase diagram shows a more conventional transition through the resonant speed. 

The cascade plot, Figure 80, shows a very low energy content in the (l/2x), (2x) and (3x) 

regions indicative of low vibration levels. 

The results of all of the previously listed experiments are provided in Table 1. The 

degree of backward whirl was significantly affected by the magnitude of the mass 

imbalance, but not significantly affected by the relative position of the elongated (non- 

circular) bearing. The responses obtained from the elongated bearing matched closely to 

the good bearing response at 1.0 gram imbalance except for the (l/2x) vibration levels and 

rotor orbits at twice the critical speed. The position of the rotor shaft, disk and mounting 

assembly relative to the gravitational force greatly affected the rotor response, however 

backward whirl was not evidenced in either of these configurations. 
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BEARING 

CONFIGURATION IMBALANCE 

1 X 

RESPONSE 

1/2 X 

RESPONSE 

BAD BEARING 
(TABLE MOUNT) 1.0 gram BW/SR YES 

GOOD BEARING 
(TABLE MOUNT) 0.0 gram NO BW/SR NO 

0.5 gram NO BW/SR NO 

1.0 gram BW/SR YES 

1.6 gram BW/SR VERY MUCH 

VERY BAD BEARING 
HORIZONTAL 
(TABLE MOUNT) 

1.0 gram BW/SR VERY MUCH 

VERY BAD BEARING 
VERTICAL 
(TABLE MOUNT) 

1.0 gram BW/SR VERY MUCH 

VERY BAD BEARING 
1 RESONANT DISP. 
(TABLE MOUNT) 

1.0 gram BW/SR YES 

VERY BAD BEARING 
II RESONANT DISP. 
(TABLE MOUNT) 

1.0 gram BW/SR VERY MUCH 

GOOD BEARING 
HORIZONTAL 
(WALL MOUNT) 

1.0 gram NO BW/SR N3 

GOOD BEARING 
VERTICAL 
(WALL MOUNT) 

1.0 gram NO BW/SR NO 

Table 1.   Results From Experimental Investigation 
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V.    DISCUSSION OF RESULTS 

The previous analyses will be discussed as well as possible causes which produce the 

split resonance and backward whirl rotordynamic response phenomena. As expected, the 

experimental data is not as smooth as the analytic solutions generated by the model but a 

general insight into the overall characteristics of the rotor shaft and bearing system can be 

attained and useful information can be gleaned from the results. In all cases the response is 

greatly influenced by the forcing function F(t) which is created by imbalance. 

By varying the characteristic parameters (Kxx, KXy, KyX, Kyy, Cxx, CXy, Cyx, and 

Cyy) in the analytic model the rotor response can be significantly altered. In the first 

analysis, circular orbits were evident throughout the range of speeds of interest. The 

natural frequency of the system occurred at 2720 rpm which is lower than that obtained in 

the experimental analyses. The addition of a bearing stiffness term in the analytic model 

raised the resonant speed to 2840 rpm. The existence of asymmetric direct stiffnesses in 

the model caused elliptical orbits and the backward whirl phenomena. The addition of 

asymmetric stiffness terms caused a split peak in the x and y response amplitudes (split 

resonance). Asymmetric damping also caused elliptical orbits, however the rotor remained 

in forward whirl throughout the resonant speed range. 

Bearing cross stiffness terms lead to split peaks and elliptical orbits and the direction of 

the highest cross stiffness affects the direction of the rotor resonant response. Small 

amounts of opposite cross stiffness cause a phase shift overshoot which is also evidenced 

in the 1.6 gram imbalance experimental results. Cross damping terms provide increased 

amplitude response if the terms are negative and cause elliptical orbits with forward whirl if 

the terms are small and positive. 

The magnitude of the imbalance affects the response of the rotor in a variety of ways. 

Increased imbalance magnitude causes increased x and y deflections. Increased imbalance 
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magnitude causes increased spectral energy in the (l/2x) region at high speeds and 

increased spectral content in the (2x) and (3x) range through all operating speeds. The 

cascade plots show that the dominant energy is contained at the operating speed of the 

shaft. Even with no imbalance imposed, the shaft will have relatively high vibration levels 

at the resonant speed of the rotor/bearing system. The 1.6 gram imbalance causes 

unexpected responses at the resonant speed and at multiples of the resonant speed, as 

evidenced by the increased energy level at the (2x), (3x) and (4x) frequencies. The 

unorthodox orbits exhibited under this loading are possibly caused by a non-linear 

response generated by this imbalance. 

The elongated bearing provided increased response amplitudes in all cases except 

when the bearing was positioned to oppose the resonant displacement. The orbits at twice 

the resonant speed show marked differences in appearance and orientation. The 

supercritical orbits with the bearing positioned with the elongation in the direction of 

resonant displacement closely match those with the bearing positioned vertically. The long 

axes of the orbits are rotated 45 degrees and the speed at which they appear is slightly less 

but similarities do exist. The response of the rotor with the elongated bearing positioned 

perpendicular to the direction of resonant displacement is more similar to the good bearing 

response with 1.0 gram imbalance. The cascade plot for this configuration shows the 

decrease in energy content at the operating speed and the low energy levels at the (l/2x), 

(2x) and (3x) regions. 

Mounting the shaft in the horizontal position, in effect, changed the gravitational effect 

on the shaft caused by the bearing support structure. The y displacements remained similar 

to the table mount experiment, however the x displacement amplitude decreased due to 

rubber isolation mounts being installed between the base plate and wall board. The phase 

transition was very gradual indicative of high damping in the system. The orbits follow a 

more conventional, fluid lubricated, bearing orbit as the rotor speed is increased 
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With the shaft mounted vertically the effect of gravity on the bearing and bearing 

support structure was removed. The displacement in the y direction was damped out by the 

isolation mounts and wall board, however the orbits showed a pronounced resonance at 

2720 rpm. This resonant speed corresponds to that achieved with only the shaft stiffness 

term in the analytic model. 
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VI.    CONCLUSIONS AND RECOMMENDATIONS 

A.  CONCLUSIONS 

Using the experimental facility developed in [Ref. 1] and an analytic model to predict 

rotordynamic phenomena, a deeper understanding of the physical mechanisms that create 

split resonance and backward whirl was obtained. Analytic variables can be altered to 

change the rotor output, in effect altering the transfer function which converts the forcing 

function input to the rotor response output. 

The analytic model strongly suggests that the KXx and Kyy (direct stiffness) difference 

is responsible for the split resonance and backward whirl phenomena 

The modal test confirmed that Kyy is greater than Kxx on the experimental rotor 

assembly, at least statically. 

The effect of mass imbalance on the experimental aparatus was shown as well as the 

effects of non-circular bearings. 

The rotor system orientation with respect to the gravitational force coupled with the 

installation of rubber isolation mounts causes rotor responses to change. 

Backward whirl can be induced by split resonance caused by a mass imbalance or 

gravitational force in the bearing. The effect of bearing support structure stiffnesses may 

also cause split resonance. If the bearing is more rigidly mounted in the direction of the 

bearing support bolts, the y stiffness may be greater than the x stiffness. This asymmetry 

may cause higher forces in the y direction leading to elliptical orbits and backward whirl. 

Asymmetric damping within the bearing does not cause the backward whirl 

phenomena but does produce elliptical orbits. 

Backward whirl is not caused by bearing non-circularity. 
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The vibrations of the rotor shaft differ depending on the orientation of the elongated 

bearing. The response amplitudes are higher if the elongation is in the direction of the 

resonant displacement of the rotor. The orientation of the non-circular bearing does not 

significantly alter the backward whirl orbits. 

The bearing stiffness values are a function of the force applied, therefore the bearing 

stiffnesses change with rotor speed and with rotor orientation with respect to the 

gravitational field. Vertically mounted rotating assemblies will have a critical speed near the 

natural frequency of the shaft since bearing stiffness is negligible. At higher speeds, 

however the effect of bearing stiffness must be included in the analysis of the machine. 

B.   RECOMMENDATIONS 

There are many areas yet to be investigated using the rotor kit and data acquisition 

software. The most prevalent include: 

1. Developing an analytic/experimental procedure for rotordynamic parameter 

identification. This would entail solving for the coefficients in the analytic model using 

known experimental rotor responses. 

2. Developing an optimization technique for determining the analytic model 

parameters (Kjj and Qj). Given a rotor orbit a mathmatical equation for the response could 

be written. 

3. Study in detail the physical mechanism through which gravity influences the 

stiffnesses in the lateral directions. This would most likely require a structurally sturdy but 

configureable mount to position the rotor assembly in any position in three dimensional 

space. 

4. Conduct a detailed analysis of the lubrication regime within the bearing during 

backward whirl. The forces acting on the shaft journal at the bearing interface would need 

to be quantified along with lift and drag forces generated by the rotation of the shaft. 
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Additional areas of research include the investigation and determination of the 

dependence of bearing stiffness on shaft rotational speed, investigation of fluid lubricated 

bearing dynamics, roller bearing dynamics, and the effect of different isolation mounts on 

vibrational characteristics. 

The analytic model developed herein should be modified to allow for the bearing 

stiffnesses to change as shaft speed increases. This will provide a more realistic rotor 

response. 

The rotor kit is provided with two translucent fluid lubricated bearings. The wide use 

of fluid lubricated bearings in rotating machinery installations warrants research in this 

area. Use of the translucent bearings will provide both visual and time trace data to 

evaluate the rotor dynamic characteristics based on hydrodynamic and possibly hydrostatic 

bearings. The rotor can be configured with one or two fluid lubricated bearings. 

The use of roller bearings on marine gas turbine installations motivates the research 

into roller bearing induced shaft vibrations. The amplitudes of response are expected to be 

higher than the brass oilite bearing since the stiffness of these bearings is higher. The rotor 

kit is provided with a roller bearing which is mounted between four adjustable springs. 

This will provide for increased control of the bearing influence on rotor response. 

The rotor assembly should be hard mounted on a sturdy base which can be adjusted to 

configure the rotor in a variety of positions with respect to the gravitational field. 

Additional types of shock mounts should be obtained (with different stiffness values) and 

sequentially installed to determine their affect on rotor response. 
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APPENDIX A.    LIST OF DIMENSIONS AND PROPERTIES 

Rotor Shaft: 

Material: 4140 Low Alloy Stee [ 

Modulus of Elasticity: 200 GPa 29.2(106)psi 

Length: 45.7 cm 18.0 in 

Diameter 0.9525 cm 0.375 in 

Mass 0.253 kg 0.558 lbm 

Density 7766 kg/m3 0.281 lbm/in3 

Rotor Disk: 

Material: 316 Stainless Steel 

Width: 2.54 cm 1.0 in 

Inner Diameter 0.9525 cm 0.375 in 

Outer Diameter 1.18 cm 3.0 in 

Mass 0.816 kg 
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APPENDIX B.   ANALYTIC ROTOR DATA 
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Figure 6. Rotor Orbits and Displacements From Analytic Model For 
Kxx = 495 lbf/in, Kyy = 495 lbf/in, Kxy = 0 lbf/in, Kyx = 0 Ibf/in, 
Cxx = .025, Cyy = .025, Cxy = 0, Cyx = 0 

39 



2(K 

15- 

ROTOR SPEED - (200X rpm) FREQUENCY - (4X Hz) 

3000 4000 
ROTOfl SPEED (rpm) 

7000 

Kxx=<t95.Kyy=495.Kxy=0.Kyx=0 */in Cxx= 02S.Cyy= 025.Cxy=O.Cyx=0 

1000 2000 3000 4000 
ROTOR SPEED (rpm) 

5000 3000 7000 
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Figure 15. Cascade Plot and Phase Diagram From Analytic Model For 
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Figure 17. Cascade Plot and Phase Diagram From Analytic Model For 
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Figure 18. Rotor Orbits and Displacements From Analytic Model For 
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Figure 21. Cascade Plot and Phase Diagram From Analytic Model For 
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Figure 22. Rotor Orbits and Displacements From Analytic Model For 
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Figure 23. Cascade Plot and Phase Diagram From Analytic Model For 
Kxx = 535 lbf/in, Kyy = 535 lbf/in, Kxy = 0 Ibf/in, Kyx = 0 lbf/in, 
Cxx = .025, Cyy = .025, Cxy = .02, Cyx = .01 
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Figure 24. Rotor Orbits and Displacements From Analytic Model For 
Kxx = 535 lbf/in, Kyy = 555 lbf/in, Kxy = -5 lbf/in, Kyx = 3 lbf/in, 
Cxx = .025, Cyy = .025, Cxy = 0, Cyx = 0 
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Figure 25. Cascade Plot and Phase Diagram From Analytic Model For 
Kxx = 535 lbf/in, Kyy = 555 lbf/in, Kxy = -5 lbf/in, Kyx = 3 lbf/in, 
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APPENDIX C.    EXPERIMENTAL ROTOR DATA 
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Figure 40.   Maximum Displacements and Bode Plot 1.0 Gram Imbalance 
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Figure 41.   Cascade Plot 1.0 Gram Imbalance Good Bearing 
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Figure 43.    Rotor Orbits 1.6 Gram Imbalance Good Bearing, 
from 2860 to 2940 rpm. 

Speeds 

76 



sorcfl ofleits N£.*P. CRITICAL aPesoo 3giM8AL*NC£) *OrOfl ORBITS N6*« CRITICAL SP££0 M dy ,M8AL«NCE) 

i5- 

3" iu- 

-nitJOM 

J5        20      .15        10 5 0 5 '0        15        20        25 
A OidPt-ACcMfcNt unusi 

25 

20 

15 

| 10 

S     5 

I 
< 
a   -S 

5 
>-   10 

■IS- 

20- 

■zs 

JUtWfWn 

-25      -20       -IS      -10        -5 0 5 10        IS        20        2S 
< OiSPt-ACcMtiNr (mJiJ 

flüran CHSITS «■** CRITICAL SPSSO i i «j IMöALANCS» ROTOR oftfltrs NEAR CRITICAL Sfleso (i iq IMBALANCE) 

i2    0 

3200* on 

.25       -20        15      -10        -5 0 S 10        tS        20        25 
X DISPLACEMENT (mMi 

Figure 44.    Rotor Orbits 1.6 Gram Imbalance Good Bearing, 
from 3000 to 3200 rpm. 

Speeds 

77 



-■<■ 

TOTO«ofisirs"t äupsacmrc«. SP5£DII ^IMBM-WCSI 

i . ioOOfwn 

-5 '2 1        n        i        2        3        4        5 

* OlS?l.*ÜsMl:N r niMal 

scroflcpeiri »r ;ur>s^ cmrcv. i?s=Jn *JM8*HIW."=I 

•*'**....' 

<ÜISPL>C£MCNT ;.nusi 

J- 

«ores osairs «r SUPSScninc* äP€=o 11 »j iMa«.-«NCci 

iäOOfOin 

nuada ,«*•*■«« 

' -   ,   .   . <" 

"3 3        1 5 i l 1 4 ' 
x oisPt/**;£MeNr unu 

1 

i 
< 
v> r 

aoTOR oflöirs.*r SUP^Aca.riCM. SPEED 11 »3 iMbAtAwcsi 

.'"\ 
.'"■       -N 

"3      1      "       5       i       2       3 
< aSPl/tCEMEN r um« 
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Figure 48.   Cascade Plot 1.6 Gram Imbalance Good Bearing. 
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Figure 50.    Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Vertical Direction.   Speeds from 2900 to 3200 rpm. 
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Figure 51.    Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Vertical Direction.   Speeds from 5000 to 5800 rpm. 
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Figure 52.    Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Vertical Direction.   Speeds from 5900 to 6000 rpm. 
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Figure 53.   Maximum Displacements and Bode Plot 1.0 Gram Imbalance 
Elongated Bearing with Elongation In the Vertical Direction. 
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Figure 54.   Cascade Plot 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Vertical Direction. 
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Figure 55.    Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Horizontal Direction.   Speeds from 2780 to 2860 rpm. 
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Figure 56.    Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Horizontal Direction.   Speeds from 2900 to 3200 rpm. 
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Figure 57.    Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Horizontal Direction.   Speeds from 5000 to 5800 rpm. 
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Figure 58.   Maximum Displacements and Bode Plot 1.0 Gram Imbalance 
Elongated Bearing with Elongation In the Horizontal Direction. 
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Figure 59.   Cascade Plot 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Horizontal Direction. 
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Figure 60. Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Direction of the Resonant Displacement (45 Degrees 
off vertical).   Speeds from 2780 to 2860 rpm. 
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Figure 61. Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Direction of the Resonant Displacement (45 Degrees 
off vertical).   Speeds from 2900 to 3200 rpm. 
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Figure 62. Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Direction of the Resonant Displacement (45 Degrees 
off vertical).   Speeds from 5600 to 5800 rpm. 
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Figure 63. Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Direction of the Resonant Displacement (45 Degrees 
off vertical).   Speeds from 5900 to 6200 rpm. 
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Figure 64. Maximum Displacements and Bode Plot for 1.0 Gram 
Imbalance Elongated Bearing with Elongation In the Direction of the 
Resonant Displacement (45 Degrees off vertical). 
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Figure 65. Cascade Plot 1.0 Gram Imbalance Elongated Bearing with 
Elongation In the Direction of the Resonant Displacement (45 Degrees 
off vertical). 
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Figure 66. Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation Perpendicular to Direction of Resonant Displacement (45 
Degrees off Vertical).   Speeds from 2780 to 2860 rpm. 
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Figure 67. Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation Perpendicular to Direction of Resonant Displacement (45 
Degrees off Vertical).   Speeds from 2900 to 3200 rpm. 
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Figure 68. Rotor Orbits 1.0 Gram Imbalance Elongated Bearing with 
Elongation Perpendicular to Direction of Resonant Displacement (45 
Degrees off Vertical).   Speeds from 5600 to 6000 rpm. 
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Figure 69. Maximum Displacements and Bode Plot for 1.0 Gram 
Imbalance Elongated Bearing with Elongation Perpendicular to Direction 
of Resonant Displacement (45 Degrees off Vertical). 
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Figure 70.   Cascade Plot 1.0 Gram Imbalance Elongated Bearing with 
Elongation Perpendicular to Direction of Resonant Displacement (45 
Degrees off Vertical). 
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Figure 71.   Rotor Orbits 1.0 Gram Imbalance Shaft Mounted Horizontal. 
Speeds from 2760 to 2880 rpm. 
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Figure 72.   Rotor Orbits 1.0 Gram Imbalance Shaft Mounted Horizontal. 
Speeds from 2900 to 3200 rpm. 
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Figure 73.   Rotor Orbits 1.0 Gram Imbalance Shaft Mounted Horizontal. 
Speeds from 5600 to 6000 rpm. 

106 



VtAX X DISPLACEMENT JS. 3F5ED   ! Og "CRIZCNTAL SHAr" 

0 1000 2000 30C0 4000 5000 5000 7000 
HCTOR SPEED (rpm) 

MAX Y DISPLACEMENT vs. SPEED (I.Og HORIZONTAL SHAFT) 

1000 2000 3000 4000 5000 
ROTOR SPEED (rpm) 

5000 7000 

30 

■f 50 

z4°r- 
2 30(- 
o 
<20-- 
_J a. 
Ü2 10 a 

MAX DISPLACEMENT vs. ROTOR SPEED ( 1 .Og horizontal mount) 

"0 1000 2000 3000 4000 5000 5000 7000 
ROTOR SPEED (rpm) 

PHASE ANGLE VS. ROTOR SPEED ( 1.0g horizontal mount) 

1000 2000 3000 4000 5000 
ROTOR SPEED (rpm) 

5000 7000 

Figure  74.     Maximum   Displacements   and  Bode  Plot   for   1.0   Gram 
Imbalance Shaft Mounted Horizontal. 
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Figure 75.   Cascade Plot 1.0 Gram Imbalance Shaft Mounted 
Horizontal. 
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Figure 76.    Rotor Orbits 1.0 Gram Imbalance Shaft Mounted Vertical. 
Speeds from 2400 to 2800 rpm. 
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Figure 77.    Rotor Orbits 1.0 Gram Imbalance Shaft Mounted Vertical. 
Speeds from 2900 to 3100 rpm. 
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Figure 78.    Rotor Orbits 1.0 Gram Imbalance Shaft Mounted VertkaJ. 
Speeds from 5400 to 6000 rpm. 
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Figure   79.     Maximum   Displacements   and  Bode   Plot   for   1.0   Gram 
Imbalance Shaft Mounted Vertical. 
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Figure 80.   Cascade Plot 1.0 Gram Imbalance Shaft Mounted Vertical. 
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